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Chapter 17
Capacitors Chapter Review

EQUATIONS:

•   
  
C = q

VC

   [This is the definition of capacitance.  Specifically, the capacitance of a capacitor

is the RATIO of the charge q on one capacitor plate to the voltage VC across the plates.

This relationship is ALWAYS true.]

•  Ceq = C1 + C
2
 + C

3
 + . . .   [The equivalent capacitance of a parallel combination of capacitors

equals the sum of the individual capacitances in the combination.   As such, the
equivalent capacitance of a parallel combination will be larger than any of the elements
in the combination.  Note that this expression has the same form as the equivalent
resistance of a series combination of resistors.]

•  1/Ceq = 1/C1 + 1/C
2
 + 1/C

3
 + . . .   [The inverse of the equivalent capacitance of a series

combination of capacitors equals the sum of the inverse of each of the individual
capacitors in the combination.   As such, the equivalent capacitance of a series
combination will be smaller than the smallest of the elements in the combination.  Note
that this expression has the same form as the equivalent resistance of a parallel
combination of resistors.]

•  
  
i = dq

dt
   [This is the formal definition of current, where dq is the differential amount of

charge that passes by a point within a circuit during the differential time interval dt.
This is useful as there will be times when you will want to relate the charge q

accumulated on a capacitor plate to the voltage 
  
VC = q

C
 across the plates and the current

  
i = dq

dt
 flowing in the branch.]

•    i = ioe
− t

RC    [This relationship, derived from the solution of Kirchoff's Laws, describes the
current in a single loop RC circuit as the circuit's capacitor charges up.  The

accumulation of charge follows the relationship 

  

q t( ) = qmax 1 − e
− t

RC












, though you will

use this expression rarely, if ever.]

•    τ = RC    [This is the definition of one time constant for an RC circuit.  The time constant is
the amount of time it takes an initially uncharged capacitor in an RC circuit to charge up
to 63% of its maximum value.  In that time, the current will also drop to 37% of its
maximum.]
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•  
    
C = q

VC

, ∆V = − E • dr , VC = −∆V , κ E • dS =
qencl

εo
∫∫    [In order, these expressions are: the

definition of capacitance, the relationship between an electric field and the voltage
difference between two points in the electric field, the relationship between the capacitor's
defined voltage VC and the voltage difference between the plates of a capacitor (assuming

you are moving in the direction of the electric field between the plates--that is, from the
high voltage plate to the low voltage plate), and Gauss's Law (where k is the dielectric
constant for the medium between the plates).  Why are they all in one place?  Each is a
component in the technique required to derive a capacitance expression from scratch in
terms of the cap's physical parameters (i.e., its plate area, the distance between its plates,
etc.).]

•  Cwith dielectric = kCw/o dielectric   [This defines the dielectric constant.]

•  
  
W = 1

2
CVC

2    [This is the amount of work required to charge a capacitor of capacitance C up

to a voltage VC.  More importantly, this is the amount of energy stored in a charged

capacitor.]

•  mf,   µf , nf, pf   [The MKS unit for capacitance is farads.  One farad is a very large
capacitance.  In most cases, a capacitor's value will be in the milli, micro, nano, or pico
range.  These are denoted as: millifarads (10-3 farads), microfarads (10-6 farads),
nanofarads (10-9 farads), and picofarads (10-12 farads).  Although these abbreviations
are convenient, be aware.   Whenever you do a problem in which a capacitance value is
required, the value must be expressed in farads.  That means you must be able to convert,
say, 3.2 pf to 3.2x10-12 farads.  If you don't, you will find yourself off by a factor of a
trillion . . . ]

COMMENTS, HINTS, and THINGS to be aware of:

•  Capacitors in DC circuits are used to store energy.  They do this when a certain amount of
negative charge is placed on one plate while an equal amount of opposite (positive) charge
is placed on the other plate.  This sets up an electric field between the plates.  The energy
is stored in the electric field.

•  Charge doesn't really flow through a capacitor.  It flows onto one plate, electrostatically
repulsing an equal amount of like charge off the second plate (this leaves that second
plate oppositely charged).

•  Because the amount of charge placed on one plate during a differential time interval is
equal to the amount of charge electrostatically repulsed off the second plate during that
same interval, the current on either side of a capacitor will be the same.  That is, at any
instant, current in a branch in which there exists a capacitor will, as always, be the same
everywhere within the branch.
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•  The charging characteristic of a capacitor mirrors the discharging characteristic of a
capacitor.  That is, if it takes 2 seconds to charge a capacitor to 60% of its maximum, it
will take 2 seconds to discharge 60% of that same capacitor's accumulated charge (this
assumes that the circuit's resistor is the same in both cases).

•  Capacitors in parallel have a common voltage but different amounts of charge on their
plates.

•  Capacitors in series have a common amount of charge on their plates but different amounts
of voltage across their plates.

•  Don't be put off if you are asked to execute Kirchoff's Laws for a circuit in which capacitors

exist.  Just as the voltage across a resistor is iR, the voltage across a capacitor is 
  

q
C

.  Just

as a resistor in a circuit will have a high voltage and low voltage side, a capacitor will
also have a high voltage and low voltage side.  So, if asked to write out Kirchoff's Laws
for a complex circuit that includes capacitors, do as usual.  Define a current for each
branch, mentally noting that the current in a capacitor's branch will be time varying
(again, no big deal--assume you are dealing with a specific point in time and call the
current at that time iwhatever).  Sum the voltage changes around closed loops, as usual,

noting that the only additional information needed for capacitor branches is a
relationship between the capacitor's charge q and the branch's current i .  As that

relationship is nicely summarized by 
  
iwhatever = dq

dt
, it's no big deal.  Note, lastly, that

although you most probably won't be asked to actually solve anything beyond the most

elementary of situations, you'd better not forget the 
  
iwhatever = dq

dt
 relationship(s) when

writing out the governing expressions for the circuit.  Without it (them), a solution would
be impossible to produce.

•  Don't be put off by dielectrics.  The idea of a dielectric constant was devised to allow you to
ignore the induced charge on a dielectric surface placed between the plates of a charged
capacitor.  That is, when using Gauss's Law to determine the electric field between the
plates (you might need to do this so that you can determine the voltage difference across
the plates and, hence, the capacitance q/VC specific to the particular geometry

incorporated into your capacitor), the amount of charge inside the Gaussian surface will
be the charge on the plate (inside the G.S.) added to the charge induced on the dielectric
surface.  Multiplying by the dielectric constant allows you to ignore this latter charge
and still get a meaningful electric field expression.


